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Two-dimensional discrete breathers: Construction, stability, and bifurcations
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We develop a methodology for the construction of two-dimensional discrete breather excitations. Applica-
tion to the discrete nonlinear Scldinger equation on a square lattice reveals three different types of breathers.
Considering an elementary plaquette, the most unstable mode is centered on the plaquette, the most stable
mode is centered on its vertices, while the intermediate also unstablemode is centered at the middle of
one of the edges. Below the turning points of each branch in a frequency-power phase diagram, the construc-
tion methodology fails and a continuation method is used to obtain the unstable branches of the solutions until
a triple point is reached. At this triple point, the branches meet and subsequently bifurcate into the final state
of an extended phonon mode.

PACS numbgs): 41.20.Jb, 63.20.Pw

In the past few years, the study aftrinsic localized mentioned physical settings. Secondly, the DNLS is a ge-
modes often referred to abreathers has attracted consider- neric envelope equation describing to leading order the be-
able attention1]. The existence of these modes has beerhavior of solitons in, for example, Klein-Gordon lattices.
proven rigorously for simple benchmark nonlinear systems The breather construction technique we employ has been
such as diffusively coupled systems of pend@f while at  described previouslj14] and we will only briefly review it
the same time, they provide a natural channel for energyiere. We use an ansatz;=exp(—iAt) ; for the solution of
localization of interest to many branches of physics, as welEqg. (1) and obtain the two-dimensional steady state equation
as biology[3]. This appealing idea has guided much of the
theoretical work towards testing such hypotheses in a num- A j= =KAo ;= |7 - 2
ber of systems of physical interest as the DNA double stran

[4] or materials in the glassy statg]. In fact recent experi- q’h|s equatior(see also Ref15)) is, in essence, a nonlinear

mental work[6] in these fields as well as in material sciencee'genval.ue.' pmb'e'f“- Hence, taking aQVantage of a Rayleigh-
Ritz variational principle type formalism we can construct

[7] seems to support this framework for energy trapping. o : . L :
Although most of this methodology and associated theo:[he ground state solution iteratively. Given an initial condi-

retical techniques have been developed for the case of ot the matrix{H] is constructed as

spatial dimension, there have been some studies of higher- [H]mm=4Kk—| 4 _|2 3)
dimensional systems. Most importantly a rigorous proof of mm b

the existence of breathers in higher-dimensional nonlinear [Hlmme1=[HImm-1=[Hlmmen=[Hlnmn=—K

lattices was given in Ref2]. Also, the results of numerical (4)
studies have been published for several simple nonlinear lat-
tices as for example two-dimensional Fermi-Pasta-Ulanwherem=i+(1—-1)j, 1=1,2,... N for lattices of sizeN

chains[8,9], Klein-Gordon chaing10] and also for DNLS X N. Equation(4) is given with the understanding that for
systemd11,12. Systems of higher dimensionality have also =1 andN the chosen boundary conditions have to be imple-
been investigatefil3]. mented. Solving the remaining linear eigenvalue problem re-
Most experimental systems of interest are not onefines the prediction ofl; ; (as the eigenfunction correspond-

dimensional, necessitating generalizations to higher spatighg to the most negative eigenvajueThis procedure is
dimensions, such as the ones mentioned above. In the peaepeated until the desired precision is reached. The advan-
spective of the need to identify the similarities as well astage of this method is that it is faster and easier to implement
differences between one and higher spatial dimensions, wiéan full limit-cycle integration[16], used in conjunction
give here a synopsis of our results on the construction, bewith Newton-Raphson iterative refinement of the solutions

havior and stability of breathers in two dimensions. obtained at the cross section of the Poincare map.
The system we study is the discrete nonlinear Sainiger In this fashion, the three branches, shown in Fig. 1, with
(DNLS) equation symbols(triangles, stars, circlediave been constructed. We
will refer to these branches gwimary because the modes
iUi,jZ—kAzUi,j—|Ui,j|2Ui,j- (1) residing on them can be tracked by our technique. Each

branch corresponds to a family of breathers having identical
where AU = Ui qj+FUi—gj+ U1+ Ui o1~ 4U;; is the symmetry properties. In Fig. 1 each family is characterized
second order difference operator in two spatial dimension®Y the relation between the frequendyand thepower
and the overdot denotes partial differentiation with respect to
time. The motivation for studying this model is twofold. PZE i |2, (5)
First, the DNLS finds applications in almost all of the above i !
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FIG. 1. Bifurcation diagram of frequency vs power. Solid lines
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FIG. 3. Spatial profile of a Page-like mode.

calculated via continuation, symbol lines via our technique. See text

for detailed explanation.

It is known that there are mar] breather configurations
(in fact infinitely many if one invokes the “multibreather”
concept[17]). We will however focus our attention on the
three most simple configurations shown in Fig. 1.

(1) A mode centered on a vertex of a plaquefte., a

natively each of the four belongs to two squarééewing
these branches in the perspective of a bifurcation diagram,
allows two possible descriptions. First, placing a horizontal
cut along the [A|,P) diagram, shows that to each value of
the frequencyA corresponds three modes with different
powers,P. The values of for the three modes range from
one where the power is practically stored on a single site
(low power, ST-like modg via an intermediate mode

lattice sitg. This mode corresponds to the Sievers-Takenqpower stored in two sites, hybrid mogeo a high power

(ST) mode[18] in one dimensior{1D). An example of such
a mode is given in Fig. 2.

mode where the power is stored on four sit®age-like
mode.

(2) A mode centered on the center of the plaquette corre- Second, noticing that the frequenty| is related to the

sponding to the Page mode in 1M9], as shown in Fig. 3.
(3) Finally, Fig. 4 depicts a hybrid mode with no 1D

energy through the equatiofi=PA+33|y;;|* allows a
second interpretation. Namely, considering the primary

equivalence. Along one direction this mode is centered on @ranches, three possibilities for each value of the pdiser
site, while along the other direction it is centered betweerfor a vertical cut in the phase planappear.(1) The lowest
sites. This hybrld mode is thus centered at the middle of an]énergy mode Corresponds to the ground state of the system

one of the edges of the plaquette.

and is the ST-like mode(2) The first excited state corre-

Clearly, there is one Page-like mode per plaguette, angponds to the hybrid modé3) The second excited and most
also four ST-like modes in each plaquette, but each belonggnstable state corresponds to the Page-like mode.

to four plaquettes, such that their multiplicity is also unity.
However, the multiplicity of the four hybrid modes is two,
since there is the possibility of one in each directiaiter-
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FIG. 2. Spatial profile of a Sievers-Takeno-like mode.

This second description is more common in the 1D prob-
lem, in the sense that the difference in energy between these
modes relates to a Peierls-Naba¢RiN) barrier[20], which,
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FIG. 4. Spatial profile of a hybrid mode.
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FIG. 5. Antisymmetric unstable eigenmode spatial profile in the
hybrid case. FIG. 6. Sample calculations of eigenvalue spectra. The spectral

plane is shown for the three cases identified in the text.

roughly, corresponds to the energy an unstable mode should

release in order to gain stability. The stability of these modesT-like mode aroun®~0.58 a spatial mode with symmetry

has been extensively studied within the framework of linearof the breather bifurcates from the edge of the phonon band

stability analysis. Again, the main advantage, provided byand enters the origin of the spectral pland®at0.57, giving

the gauge symmetry of the DNLS, is that linear stability canrise to the first turning point, thereafter existing along the

be studied within the rotating wave approximatisee, e.9., pure imaginary axi§see, e.g, Fig. @]. A similar scenario

Ref. [21]). We substitute the ansata; j=exp(—iAt)(i (i.e., a mode with the spatial symmetry of the breather bifur-

+ev;;) into Eq.(1) and using the fact thaf is the solution of  cates from the band edge and enters the oxigippears in

Eqg. (2) we get that the perturbatiow, ; satisfies(see, e.g., the case of the hybrid mode.

Ref.[22]) The bifurcation from the band edge occurs in this case at
P~0.927 [Fig. 6(b)] and the saddle-node occurs &t
~0.851. Finally, in the case of the Page-like mode, the

i j+ KAV 2|3 12V + v+ Avi j=0. (6)  single antisymmetric modéout of the three that originally
resided on the imaginary ayibifurcates along the real line
Further, the ansatz; ;=a; ;exp(—iwt)+b; jexp(ot), leads  [Fig. 6(c)] at P~1.1385 but through a new bifurcation re-
to turns to the imaginary axis, giving rise to the turning point at
P~1.04. This scenari¢of different excitation power thresh-
wa; = —kAa ;= 2|y j|%a j—Aa j— 47 b, (7)) olds for the different modesis consistent with the recent
predictions of Refs[15,12 for the existence of such thresh-
—wbj ;= —kAzbi,j—2|<//i’j|2bi,j—Abi,j—(//f’jafj . (8) olds, for lattices with dimensionality higher than 1. In fact,
the theoretical expression for these thresholds that are given
From Egs.(7) and (8) it is found that the ST-like mode in Ref.[15] depends on the spatial profile of the mode, thus
always is stable on the primary brani@ng., all eigenvalues justifying our finding that the thresholds depends on the
of Egs. (7) and (8) are positivg. On the contrary, for the shape of the discrete modes. The very rich structure of the
hybrid mode(on the primary branghone eigenvalue exists secondanbranchedi.e., beyond the turning pointeas been

on the imaginary axis and causes this mode to be unstabfellowed through continuation methods, as will be described

(an example of the spatial configuration of the eigenfunctiorin detail elsewhere. However, the final fate of the three

corresponding to this eigenvalue is given in Fig. Binally, = modes can be seen in Fig. 1; they merge in what appears to

the Page-like mode is much more unstable in the sense thathe a triple point and finally bifurcate to an extended phonon
generically has three imaginary eigenvalues. Since the sysnodeP~1.142,|A|~0.0051[26]. It is worth noticing that

tem possesses time reversal symmetry, the eigenvalues apis value is in exact agreement with the continuum result for

pearing on the positive branch of the axis always have tim¢he localized ground state in 2[25].

reversal symmetric partners on the negative branch. A pair In summary we have presented detailed investigations of

among them has the same frequeflogcause of the fourfold the structure and stability of two-dimensional breather modes

rotational symmetry while the eigenfunctions correspond- on a square lattice in the framework of the discrete nonlinear
ing to these modes are spatially antisymmetric. Schralinger equation. We have found interesting differences

The termination of each of the primary branches comedetween two dimensions and some results found in the con-
about through a saddle-node bifurcation which is exactly theext of one spatial dimension. These differences arise

type of behavior we have found to be generic in 1D systemshrough the existence of a hybrid mode, as well as from a

[23,24]. However, in our present 2D case the bifurcationmuch richer stability scenario. This picture has been charac-

structure is much richer. In particular, in the case of theterized using bifurcation theory tools and continuation meth-
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