
9

PHYSICAL REVIEW E FEBRUARY 2000VOLUME 61, NUMBER 2
Two-dimensional discrete breathers: Construction, stability, and bifurcations

P. G. Kevrekidis,1,2 K. O” . Rasmussen,1 and A. R. Bishop1
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2Department of Physics and Astronomy, Rutgers University, 136 Frelinghuysen Road, Piscataway, New Jersey 08854-801

~Received 1 September 1999!

We develop a methodology for the construction of two-dimensional discrete breather excitations. Applica-
tion to the discrete nonlinear Schro¨dinger equation on a square lattice reveals three different types of breathers.
Considering an elementary plaquette, the most unstable mode is centered on the plaquette, the most stable
mode is centered on its vertices, while the intermediate~but also unstable! mode is centered at the middle of
one of the edges. Below the turning points of each branch in a frequency-power phase diagram, the construc-
tion methodology fails and a continuation method is used to obtain the unstable branches of the solutions until
a triple point is reached. At this triple point, the branches meet and subsequently bifurcate into the final state
of an extended phonon mode.

PACS number~s!: 41.20.Jb, 63.20.Pw
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In the past few years, the study ofintrinsic localized
modes, often referred to asbreathers, has attracted consider
able attention@1#. The existence of these modes has be
proven rigorously for simple benchmark nonlinear syste
such as diffusively coupled systems of pendula@2#, while at
the same time, they provide a natural channel for ene
localization of interest to many branches of physics, as w
as biology@3#. This appealing idea has guided much of t
theoretical work towards testing such hypotheses in a n
ber of systems of physical interest as the DNA double str
@4# or materials in the glassy state@5#. In fact recent experi-
mental work@6# in these fields as well as in material scien
@7# seems to support this framework for energy trapping.

Although most of this methodology and associated th
retical techniques have been developed for the case of
spatial dimension, there have been some studies of hig
dimensional systems. Most importantly a rigorous proof
the existence of breathers in higher-dimensional nonlin
lattices was given in Ref.@2#. Also, the results of numerica
studies have been published for several simple nonlinear
tices as for example two-dimensional Fermi-Pasta-Ul
chains@8,9#, Klein-Gordon chains@10# and also for DNLS
systems@11,12#. Systems of higher dimensionality have al
been investigated@13#.

Most experimental systems of interest are not o
dimensional, necessitating generalizations to higher sp
dimensions, such as the ones mentioned above. In the
spective of the need to identify the similarities as well
differences between one and higher spatial dimensions
give here a synopsis of our results on the construction,
havior and stability of breathers in two dimensions.

The system we study is the discrete nonlinear Schro¨dinger
~DNLS! equation

i u̇ i , j52kD2ui , j2uui , j u2ui , j , ~1!

where D2ui , j5ui 11,j1ui 21,j1ui , j 111ui , j 2124ui , j is the
second order difference operator in two spatial dimensi
and the overdot denotes partial differentiation with respec
time. The motivation for studying this model is twofold
First, the DNLS finds applications in almost all of the abo
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mentioned physical settings. Secondly, the DNLS is a
neric envelope equation describing to leading order the
havior of solitons in, for example, Klein-Gordon lattices.

The breather construction technique we employ has b
described previously@14# and we will only briefly review it
here. We use an ansatzui , j5exp(2iLt)ci,j for the solution of
Eq. ~1! and obtain the two-dimensional steady state equa

Lc i , j52kD2c i , j2uc i , j u2c i , j . ~2!

This equation~see also Ref.@15#! is, in essence, a nonlinea
eigenvalue problem. Hence, taking advantage of a Rayle
Ritz variational principle type formalism we can constru
the ground state solution iteratively. Given an initial cond
tion, the matrix@H# is constructed as

@H#m,m54k2uc i , j u2, ~3!

@H#m,m115@H#m,m215@H#m,m1N5@H#m,m2N52k,
~4!

where m5 i 1( l 21) j , l 51,2, . . . ,N for lattices of sizeN
3N. Equation~4! is given with the understanding that fori
51 andN the chosen boundary conditions have to be imp
mented. Solving the remaining linear eigenvalue problem
fines the prediction ofc i , j ~as the eigenfunction correspond
ing to the most negative eigenvalue!. This procedure is
repeated until the desired precision is reached. The ad
tage of this method is that it is faster and easier to implem
than full limit-cycle integration@16#, used in conjunction
with Newton-Raphson iterative refinement of the solutio
obtained at the cross section of the Poincare map.

In this fashion, the three branches, shown in Fig. 1, w
symbols~triangles, stars, circles! have been constructed. W
will refer to these branches asprimary because the mode
residing on them can be tracked by our technique. E
branch corresponds to a family of breathers having ident
symmetry properties. In Fig. 1 each family is characteriz
by the relation between the frequencyL and thepower

P5(
i , j

uc i , j u2. ~5!
2006 ©2000 The American Physical Society
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It is known that there are many@8# breather configurations
~in fact infinitely many if one invokes the ‘‘multibreather’
concept@17#!. We will however focus our attention on th
three most simple configurations shown in Fig. 1.

~1! A mode centered on a vertex of a plaquette~i.e., a
lattice site!. This mode corresponds to the Sievers-Take
~ST! mode@18# in one dimension~1D!. An example of such
a mode is given in Fig. 2.

~2! A mode centered on the center of the plaquette co
sponding to the Page mode in 1D@19#, as shown in Fig. 3.

~3! Finally, Fig. 4 depicts a hybrid mode with no 1
equivalence. Along one direction this mode is centered o
site, while along the other direction it is centered betwe
sites. This hybrid mode is thus centered at the middle of
one of the edges of the plaquette.

Clearly, there is one Page-like mode per plaquette,
also four ST-like modes in each plaquette, but each belo
to four plaquettes, such that their multiplicity is also uni
However, the multiplicity of the four hybrid modes is two
since there is the possibility of one in each direction~alter-

FIG. 1. Bifurcation diagram of frequency vs power. Solid lin
calculated via continuation, symbol lines via our technique. See
for detailed explanation.

FIG. 2. Spatial profile of a Sievers-Takeno-like mode.
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natively each of the four belongs to two squares!. Viewing
these branches in the perspective of a bifurcation diagr
allows two possible descriptions. First, placing a horizon
cut along the (uLu,P) diagram, shows that to each value
the frequencyL corresponds three modes with differe
powers,P. The values ofP for the three modes range from
one where the power is practically stored on a single
~low power, ST-like mode!, via an intermediate mode
~power stored in two sites, hybrid mode!, to a high power
mode where the power is stored on four sites~Page-like
mode!.

Second, noticing that the frequencyuLu is related to the
energy through the equationE5PL1 1

2 (uc i , j u4, allows a
second interpretation. Namely, considering the prim
branches, three possibilities for each value of the power~i.e..
for a vertical cut in the phase plane! appear.~1! The lowest
energy mode corresponds to the ground state of the sys
and is the ST-like mode.~2! The first excited state corre
sponds to the hybrid mode.~3! The second excited and mo
unstable state corresponds to the Page-like mode.

This second description is more common in the 1D pro
lem, in the sense that the difference in energy between th
modes relates to a Peierls-Nabarro~PN! barrier @20#, which,

xt

FIG. 3. Spatial profile of a Page-like mode.

FIG. 4. Spatial profile of a hybrid mode.
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roughly, corresponds to the energy an unstable mode sh
release in order to gain stability. The stability of these mo
has been extensively studied within the framework of lin
stability analysis. Again, the main advantage, provided
the gauge symmetry of the DNLS, is that linear stability c
be studied within the rotating wave approximation~see, e.g.,
Ref. @21#!. We substitute the ansatzui , j5exp(2iLt)(ci,j
1evi,j) into Eq.~1! and using the fact thatc is the solution of
Eq. ~2! we get that the perturbationv i , j satisfies~see, e.g.,
Ref. @22#!

i v̇ i , j1kD2v i , j12uc i , j u2v i , j1c i , j
2 v i , j

! 1Lv i , j50. ~6!

Further, the ansatzv i , j5ai , jexp(2ivt)1bi,jexp(ivt), leads
to

vai , j52kD2ai , j22uc i , j u2ai , j2Lai , j2c i , j
2 bi , j

! , ~7!

2vbi , j52kD2bi , j22uc i , j u2bi , j2Lbi , j2c i , j
2 ai , j

! . ~8!

From Eqs.~7! and ~8! it is found that the ST-like mode
always is stable on the primary branch@e.g., all eigenvalues
of Eqs. ~7! and ~8! are positive#. On the contrary, for the
hybrid mode~on the primary branch! one eigenvalue exist
on the imaginary axis and causes this mode to be unst
~an example of the spatial configuration of the eigenfunct
corresponding to this eigenvalue is given in Fig. 5!. Finally,
the Page-like mode is much more unstable in the sense th
generically has three imaginary eigenvalues. Since the
tem possesses time reversal symmetry, the eigenvalue
pearing on the positive branch of the axis always have t
reversal symmetric partners on the negative branch. A
among them has the same frequency~because of the fourfold
rotational symmetry!, while the eigenfunctions correspond
ing to these modes are spatially antisymmetric.

The termination of each of the primary branches com
about through a saddle-node bifurcation which is exactly
type of behavior we have found to be generic in 1D syste
@23,24#. However, in our present 2D case the bifurcati
structure is much richer. In particular, in the case of

FIG. 5. Antisymmetric unstable eigenmode spatial profile in
hybrid case.
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ST-like mode aroundP'0.58 a spatial mode with symmetr
of the breather bifurcates from the edge of the phonon b
and enters the origin of the spectral plane atP'0.57, giving
rise to the first turning point, thereafter existing along t
pure imaginary axis@see, e.g, Fig. 6~a!#. A similar scenario
~i.e., a mode with the spatial symmetry of the breather bif
cates from the band edge and enters the origin!, appears in
the case of the hybrid mode.

The bifurcation from the band edge occurs in this case
P'0.927 @Fig. 6~b!# and the saddle-node occurs atP
'0.851. Finally, in the case of the Page-like mode,
single antisymmetric mode~out of the three that originally
resided on the imaginary axis! bifurcates along the real line
@Fig. 6~c!# at P'1.1385 but through a new bifurcation re
turns to the imaginary axis, giving rise to the turning point
P'1.04. This scenario~of different excitation power thresh
olds for the different modes!, is consistent with the recen
predictions of Refs.@15,12# for the existence of such thresh
olds, for lattices with dimensionality higher than 1. In fac
the theoretical expression for these thresholds that are g
in Ref. @15# depends on the spatial profile of the mode, th
justifying our finding that the thresholds depends on
shape of the discrete modes. The very rich structure of
secondarybranches~i.e., beyond the turning points! has been
followed through continuation methods, as will be describ
in detail elsewhere. However, the final fate of the thr
modes can be seen in Fig. 1; they merge in what appea
be a triple point and finally bifurcate to an extended phon
modeP'1.142,uLu'0.0051@26#. It is worth noticing that
this value is in exact agreement with the continuum result
the localized ground state in 2D@25#.

In summary we have presented detailed investigation
the structure and stability of two-dimensional breather mo
on a square lattice in the framework of the discrete nonlin
Schrödinger equation. We have found interesting differenc
between two dimensions and some results found in the c
text of one spatial dimension. These differences ar
through the existence of a hybrid mode, as well as from
much richer stability scenario. This picture has been cha
terized using bifurcation theory tools and continuation me

e
FIG. 6. Sample calculations of eigenvalue spectra. The spe

plane is shown for the three cases identified in the text.
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ods. We believe that the subtleties of discrete nonlinear
tice solutions, accessible through the methodolog
presented here, will be of value for developing theoreti
frameworks. They should also be of value to experimen
ists, for quantitative guidance in a much wider range of
systems, to which energy localization may be relevant.
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